Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean
نویسندگان
چکیده
Coastal wetlands can have exceptionally large carbon (C) stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR) in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes), and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N) and phosphorus (P) from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1)) followed by medium mangroves (623±41 Mg ha(-1)), dwarf mangroves (381±52 Mg ha(-1)) and marshes (177±73 Mg ha(-1)). At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%). Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.
منابع مشابه
Effects of Land Use and Land Cover changes on Soil Organic Carbon and Total Nitrogen Stocks in the Olesharo Catchment, Narok County, Kenya
Land Use and Land Cover Change (LULCC) is the most prominent cause of Soil Organic Carbon (SOC) variability in any landscape. Kenyan Arid and Semi-Arid Lands (ASALs) have been facing extensive land use/ cover changes in the last three decades prompting a review on the impacts it has on soil quality and consequently on land degradation. This study was carried out in 2016 in Olesharo Catchment, N...
متن کاملDegradation in carbon stocks near tropical forest edges
Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on...
متن کاملCarbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic.
Mangroves are recognized to possess a variety of ecosystem services including high rates of carbon sequestration and storage. Deforestation and conversion of these ecosystems continue to be high and have been predicted to result in significant carbon emissions to the atmosphere. Yet few studies have quantified the carbon stocks or losses associated with conversion of these ecosystems. In this s...
متن کاملTemporal study of Solduz wetland microalgae in southern part of Lack Urmia
Phytoplankton is one of the main components of wetlands, which plays a vital role in providing nutrients, oxygen for other organisms, stabilizing nitrogen and carbon dioxide. In the meantime, the current status of Lake Urmia highlights the need to conserve and protect wetlands related to these ecosystems and their living and non-living components. Therefore, this study was conducted to assist i...
متن کاملLandscape-Scale Analysis of Wetland Sediment Deposition from Four Tropical Cyclone Events
Hurricanes Katrina, Rita, Gustav, and Ike deposited large quantities of sediment on coastal wetlands after making landfall in the northern Gulf of Mexico. We sampled sediments deposited on the wetland surface throughout the entire Louisiana and Texas depositional surfaces of Hurricanes Katrina, Rita, Gustav, and the Louisiana portion of Hurricane Ike. We used spatial interpolation to model the ...
متن کامل